
AD-A2 6 4 730'i ll \~ll/ Ut 'liii ll I

RL-TR-92-317Final Technical Report•
December 1992

PROCEDURES FOR APPLYING
ADA QUALITY PREDICTION
MODELS

The MITRE Corporation L IC
D.D. Murphy, W.M. Thomas, W.M. Evanco, W.W. Agresti MAY 19. 1993.D

APPROVED FOR PUBLIC REL EASE; DIS TRIBU TION !4L fIL MITED.

, . _10103

Rome Laboratory
Air Force Materiel Command

Griffiss Air Force Base, New York

This report haq been reviewed by the Rome Laboratory Pubi ic Ai I airs (

(PA) and is releasable to the National Technical innormati•in Service ,NiISc. At
NTIS it will be releasable to the general public, including treign ,ticn-,

RL-TR-92-317 has been reviewed and is approved for publication.

APPROVED: /

ANDREW J. CHRUSCICKI
Project Engineer

FOR THE COMMANDER

JOHN A. GAANIERO
Chief Scientist for C3

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,
please notify RL (C3CB) Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

F ,om pproc,(ýaREPORT DOCUMENTATION PAGE

a, '"qy.ta ';,A* OV A"'*xn VA dlA'XW s)*c %0'ffj)1WW1 W.~Idxw p1 wWWx Ap#z 1 ýVI

I AGE NCY US[i ONLtY (Leave Blank) :2, RUPOfT DAII 1} * POtIU "Y1' A141) I)Al) C. 2 2

4 TIT If AND SUBTITLE 1 UN)DIG NUMMI H5E

PROC DI)1'RlS FOR APP! YINo, A.)9A ,V.iY QPt'Ali '" 1'; ii

6. AUIHOR(S)

1). D. .Iurphv, W. X. TFhoia,,nt , W . !\.:c, . W \' , - •

7 PERFORMING ORGANIZATION NAMEIS) AND ADDIILSSiLS) 8 P1 Rfi O1MING ONGANtztIctN

The lI TRE Corpora ion HIPOR1 NUMMI(i

:A'.shington C3 Ceenter
;525 (;lshire Drive . '•. , '.

McLU.an VA 22102- 14 8

9. SPONSORINGI)MONITORING AGENCr NAME (S) AND ADDRESS S[10 SPO(I.N$)C4 IChiN0

Rome Laboratory k(e KB) AGE3NCY(1fPO3T) tt.Pi i

5 5 Brooks Road
Griffiss AFB NY 1

R,.

11. SUPPLEMENTARY NOTES
Rome Laboratory Project hng neer: Andrew .K. Chru>cicvk 7!; .

12& DISTRIBU'rON/AVAILABILUTY STATEMENT)t2b. 0ISTI•I3U1 ION C OOL

Appoved for public release; distribution in!lmittd.

13. ABS 11tACT(M-wwarcs,)

Procedures for applying Ada software qualitv pred-icti i ,n mde!ý; ¶or pu rp, 0..! -.-,orh.
validation are described. The multivariate regreso itn models prediit metri - '-u ;,

to software reliability, maintainability, andI flexibility. [he procvdo r,'- ; k,
the use of an Ada source code analysis tool and the St-t! ;t ,A ', ,t.

to extract data from Ada source code and create data sets colntatining qc'itntiti ..

needed for the models.

14. SUBJECT TERMS IS 1uM8E P Or PA S
Software Quality, Ada Reliability, Maintainability, Flexibilitvy___ .

r. PRICý CODt

17. SECURITY CLASSIFICATION 8. SECURITY CLASSIFICATION i19. SECURITY CLASSIFICATION 120. LIMITATION OF ASTFIAC T
OF REPORT OF THIS PAGE OF ABSTRACT

UNCIASSI F] ED UNCIASS I FI ED IUNCLASS I FlI E) 171L
NSN 754a-01 2M55 stori [2W W

EXECUTIVE SUMMARY

This report describes procedures for applying Ada software quality pred'iclion models for
purposes of model validation. The multivariate regression mo-dels were developed under the
Mission Oriented Investigation and Experimentation (MOIE) program of The MITRE
Corporation. The models predict metrics related to software reliability, maintainability. and
flexibility. The procedures include the use of an Ada source code analysis tool and the
Statistical Analysis System (SAS) to extract data from Ada source code and create data sets
containing quantities needed for the models.

The quality prediction models have been developed in a research setting, based on software
project data. The models are at a stage of development where they are ready for validation
on additional software projects to refine the coefficients of the models. Validation of the
models on diverse software projects will increase the confidence in subsequent application of
the models.

Readers are cautioned that the models were developed by analyzing source code and data
from a particular set of Ada projects. The models in this report should not be expected to be
universally applicable regardless of the size and nature of the project. Indeed, under:.tanding
the range of applicability of tI- ' models is part of the validation process, which the procedures
in this report are intended to ta. ilitate.

This report is intended to support individu".ls who want to validate the models by applying
them to Ada projects. The starting point for someone to use this report is the availability of
Ada source code and an interest in obtaining a static analysis of the code or applying the
quality prediction models. The models are of the form,

q = f(ai*Xi)

where q is a quality factor to be predicted; ai are coefficients resulting from the MOIE
research and given in this report; and Xi are calculated quantities whose values depend on the
Ada source code for the project. The values of Xi need to determined, so they can be
combined with the coeffficients ai to produce the predicted quality factor. Validation
involves comparing the predicted values to actual data as they become available on projects.

The models are based on static features of the Ada code, such as counts of declarations
imported and exported across library units. To extract these data, a software tool. the Ada
Source code Analyzer Program (ASAP), is used. An additional product of ASAP is the
gun,,,,ani-c of q Project Summary Report, providing a profile of the source code. The
extracted data proceed through sevcral stages of processing before they are transformed into
the Xi values needed for the quality prediction models. Because severa! processing steps are
involved, an organization of directories and files has been esulblished and described in this
report to show where the Ada source code, software tools, intermediate data, models, and

calculated values reside during the process. The application of the models is now performed
at the MITRE-Washington Software Engineering Center using a Sun computer, running the
Unix operating system. This directory structure can serve as a motdel that can he duplicated
if another computer system is used to apply the models.

The report describes the series of steps invoking SAS programs that generate data files at the
compilation unit, library unit, and subsystem levels. The library unit level files and
subsystem level files will contain the quantities needed for calculating the values X, so the
models can be applied. The models described can be categorized based on: the quality factor
(reliability, maintainability, or flexibility) associated with the metric predicted using the
model; the level of granularity of the software quality predicted for subsystems or library unit
aggregations; and the testing activities over which the model is predicting the metric either
unit, system, and acceptance test or system and acceptance test. The report includes the
steps to invoke SAS programs, corresponding to the models, to compute predicted values for
quality factors.

II

ACKNOWLEDGMENTS

The authors acknowledge the contributions of Bradford T. Ulery to the development of the
procedures and file directories described in this report.

5

Accession For

NTIS GRA&I

DTTC TAB 0

DI Str'!blti-

Avallaility nCndos

IDist Val

=M ,,

TABLE OF CONTENTS

SECTION PAGE

I Introduction 1-1

1.1 Purpose 1-1
1.2 Background 1-1
1.3 Intended Audience 1-2
1.4 Overview of the Procedures 1-2

2 Extracted Data and Structural Metrics 2-1

2.1 Declarations 2-1
2.2 Exports 2-2
2.3 Imports 2-4
2.4 Statement Counts 2-5
2.5 Quality Metrics 2-5

3 Directories and File Organization 3-1

4 Ada Source Code Analysis 4-1

4.1 Overview of the Source Code Analysis Procedure 4-1
4.2 Detailed Source Code Analysis Procedure 4-2

5 Compilation Unit Level Analysis 5-1

5.1 Overview of the Compilation Unit Level Analysis Procedure 5-1
5.2 Detailed Compilation Unit Level Analysis Procedure 5-2

6 Library Unit Level Analysis 6-1

6.1 Overview of the Library Unit Level Analysis Procedure 6-1
6.2 Detailed Library Unit Level Analysis Procedure 6-2

7 Subsystem Level Analysis 7-1

7.1 Overview of the Subsystem Level Analysis Procedure 7-1
7.2 Detailed Subsystem Level Analysis Procedure 7-1

SECTION PAGE

8 Description and Use of the Quality Prediction Models 8-1

8.1 Reliability Models 8-2
8.2 Maintainability Models 8-5
8.3 Flexibility Models 8-9

List of References RE- I

Appendix Example Of Project Summary Report A-1

Glossary GL- I

Distribution List DI- I

vi

LIST OF FIGURES

FIGURE PAGE

1-1 Overview of Procedures and Report Sections 1-5

2-1 Example to Illustrate Exports and Imports 2-3

3-1 High Level Directories 3-2

3-2 Project Directories 3-4

3-3 Tools Directories 3-6

3-4 Template Directories 3-7

4-1 Directories Used in Source Code Analysis Procedures 4-3

5-1 Directories Used in CU-level Analysis Procedure 5-3

6-1 Directories Used in LU-level Analysis Procedure 6-3

7-1 Directories Used in Subsystem-level Analysis Procedure 7-3

vii

LIST OF TABLES

TABLE PAG;E

2-1 Subsystem-level Quality Metrics 2-6

2-2 LUA-Ievel Quality Metrics 2-7

3-1 High Level Directories 3-3

3-2 Project Directories 3-5

3-3 Tools Directories 3-6

3-4 Template Directories 3-8

viii

SECTION 1

INTRODUCTION

This report describes procedures for applying Ada software quality prediction models for
purposes of model validation. The multivariate regression models were developed under the
Mission Oriented Investigation and Experimentation (MOlE) prograrr of The vIITRE
Corporation. The models predict metrics related to software reliabili v, maintainability, and
flexibility.

This section discusses the purpose of this report, background of the MOlE research that
produced the models, the intended audience for this report, and an overview of the
procedures to apply the models.

1.1 PURPOSE

This report is intended to support individuals who want to support in validating quality
prediction models by applying them to Ada projects. The models have been developed in a
research setting, ba.aed on software project data. The models are at a stage of development
where they are ieady for validation on additional software projects to refine the coefficients
of the models. Validation of the models on diverse software projects will increase the
confidence in subsequent application of the models.

The reader should be cautioned that the quality prediction models were developed using a
particular set of Ada projects (described in [1]). The models should not be expected to be
universally applicable regardless of the size and nature of the project. Indeed, understanding
the range of applicability of the models is part of the validation process, which the procedures
in this report are intended to facilitate.

1.2 BACKGROUND

MITRE has been conducting a MOLE research project investigating software quality
prediction from Ada designs. The research has focused on prediction of metrics related to the
software quality factors of reliability, maintainability, and flexibility. The project team has
developed multivariate models that use characteristics of the Ada design as the basis for
predictions of quality. The approach and rationale for developing the models are described in
separate reports and technical papers. [1, 2, 4, 5]

The development of the quality prediction models in,,olved the analysis of data from
software development projects. The data included Ada source code and information on the
experiences implementing and testing the code to make the software pass acceptance testing.

1-1

This information inclded reports of defects found during testing and reports of the effort
expended to repair Mifects and to make changes to the software. Details of the Ada software
and corresponding project data are discussed in I 1I.

For the models to be used with confident.e, they need to be validated. For val; Jation, the
models need to be anplied to projects other than those which were the basis -': model
development. This report describes the procedures for applying the models. sc individuals
outside the MOIE research team can participate in validating the models.

1.3 INTENDED AUDIENCE

This report is written for individuals who want to validate the quality prediction models by
applying them to Ada source code. Another possible user of these procedures is someone
who wants to conduct a static analysis of Ada source code. For someone interested only in
static analysis, sections 1 through 4 will be sufficient to explain how to use the Ada Source
Analyzer Program (ASAP) to produce a Project Summary Report (PSR), a sample of which
is included in the Appendix to this report. Reference 3 provides detailed description of the
capabilities of ASAP.

The procedures in this report assume a basic knowledge of Ada and familiari.y with Unix
commands.

1.4 OVERVIEW OF THE PROCEDURES

The starting point for someone to use this report is the availabili:y of Ada source code and an
interest in obtaining a static analysis of the code or applying the quality prediction models.
The models are of the form

q = f(ai*Xi),

where q is a quality factor to be predicted; ai are coefficients resulting from the MOlE
research and given in this report; and Xi are calculated quantities whose values depend on the
Ada source code for the project. The values of Xi need to determined, so they can be
combined with the coefficients ai to produce the predicted quality factor. Validation involves
comparing the predicted values to actual data as they become available on proJects.

Sections 2 through 7 of this report describe the processing needed so that the values Xi can
be calculated for given Ada source code. Section 8 gives the models themselves; that is, the
coefficients ai, and ways of combining ai and Xi to calculate the predicted quality factors,
Section 8 also includes the commands to invoke programs that calculate the predicted values.
Because the bulk of this report involves proceeding from Ada source code to the calculated

1-2

quantities Xi, this process will be outlined in this secrioii as all (),Cr, It% to SCctins 2
through 7.

The models are based on static features of the Ada code, such as counis ot deuaations
Section 2 discusses the kinds of data on which the models depend. The disc sui, on0 In
Section 2 should help the reader understand what data is being extracted from the Ada code
to use in later calculation of X,. To extract these data, a software tool, ASAP. Is used ASAP
is a static Ada source code analysis program developed at the Universaty of 'Varvland ASAP
performs functions such as the following: presents profiles of compilation units; counts
source lines and Ada statements; computes metics based on Il alstead software IscIence
analysis and McCabe cyclomatic complexity analysis; and prepares reports based on these
analyses [31. ASAP was developed as a stand-alone analysis tool Not all of the extracted
and calculated quantities produced by ASAP are needed for applying the qualiN prediction
models; for example, Halstead and McCabe metrics are not used. ASAP was found to extract
static data needed for our models so it is being used for that purpose in these procedures
Section 2 also defines the quality metrics that are based on the extracted data. These metrics
relate to design characteristics and are elements of the models presented in Section 8,

Because several steps are involved in eventually calculating the X, values, an organization of
directories and files has been established and described in Section 3 to show wherc the Ada
source code, software tools, intermediate data, models, and calculated value, reside during
the process. The application of the models is now performed at the \I TRE-Washington
(SWEC) using a Sun computer, runring the Unix operating systemn Section 3 discusses the
directory organization on the SWEC computer. This directory structure can ,eric as a model
that can be duplicated if another computer system is used to apply the mrodels.

The steps involved in processing Ada source code, leading to the execution of the models, are
depicted in Figure 1-1. The relationship of seps in the process to sections in this report is
also shown in Figure I- 1. Section 4 describes the execution of ASAP to extract static data
from the Ada source code. An additional product of this step is the production of the ASAP
Project Summary Report, which provides a profile of the source code. An example of Olie
ASAP Project Summary Report is included in the Appendix. For readers interested only in
static analysis of their code, Section 4 contains the necessary commands lealing to the
generation of the Project Summary Report. For readers who plan to apply the quality
prediction models, Section 4 also includes steps to execute additional extraction program s
which operate on the output of ASAP to produce data files in an appropriate form for use
with the (SAS), the statistical software used in the analysis.

As Figure 1-1 shows, Section 5 begins with all of the needed data available in SAS input
files. The quantities needed for the quality prediction mcodels refer to three different levels of
structural granu,,ity in the software. ASAP provides static data on Ada compilation units
(as shown in Appendix A), so the first level of analysis is to calculate compilation-unit level
measures. Section 5 discusses the steps involved in this processing, invoking SAS programs
to generate the compilation unit files, as shown in Figure I -1.

1-3

Compilation-unit level measures provide the needed data tor measures at two higher levels of
granularity: library unit aggregations (LU As) and subsystems. SAS programs at the LUA
and subsystem levels are discussed in sections 6 and 7, respectively. Quality prediction
models have been established at these two levels, so the products of the processing in
sections 6 and 7 directly feed the quality prediction models.

Unlike "compilation unit", the terms "library unit aggregation" and "subsystem" are not
defined in the Ada language. Both terms arose from the MOIE research because of a need to
express structural relationships at intermediate points between compilation units and entire
systems, which may be extremely large. Both LUA and subsystem have been useful for
analysis and reporting purposes. An LUA is an Ada library unit (LU) and its descendent
compilation units, if any [2]. An LUA 'as become a structure of considerable interest in the
research. The most interesting class of LUA examples consists of a package specification. a
package body, and subunits. Such LUAs may include subunit structures which are nested at
several levels.

Subsystem is used to retain a degree of generality in the research, when referring to major
functional areas or principal units of a complete system. If the system is developed under
Department of Defense (DOD)-STD-2167A, a subsystem may be a computer software
configuration item, or computer software component. But, because such terms are not
universally used, subsystem is used in this research.

At the conclusion of the steps described in sections 6 and 7. the library unit level files and
subsystem level files will contain the quantities needed for calculating the values X,. Section
8 represents the final stage of processing. The models described in Section 8 can be
categorized based on: the quality factor (reliability, maintainability, or flexibility) associated
with the metric predicted using the model; the level of granularity of the software quality
predicted for subsystems or library unit aggregations; and the testing activities over which the
model is predicting the metric -- either unit, system, and acceptance test (USA) or system and
acceptance test (SA). For a detailed discussion of the background, motivation, rationale for
the models, refer to references 1, 2, and 4. Section 8 includes the steps to invoke SAS
programs, corresponding to the models, to compute predicted values for quality factors.

1-4

Ada ASAP SAS CU- LUA- Subsystem
Source Output Input Level Level Files
Files Files Files Files Files

Run Create Create Create Create Run
ASAP SAS CU- LUA- Subsystem Models

Input Level Level Files
Files Files Files

SECTION 4 SECTION 4 SECTION s SECTION 6 SECTION 7 SECTION 8

ProjectMoe
Summary Results
Report

Figure 1-1. Overview of Procedures and Report Sections

1-5

SECTION 2

EXTRACTED DATA AND STRUCTURAL METRICS

The purpose of this section is to describe the classes of data that will be extracted from the
Ada source code and the structural metrics used in the models. The procedures in sections 4
through 7 will refer to the data classes discussed in this section. The quality prediction
models in Section 8 include factors based on the structural metrics.

The MOlE research has shown that the number and kinds of declarations are significant
factors in quality prediction. Also significant are the patterns of sharing information by
making quantities declared in one place accessible elsewhere in the software. We refer to
declarations in the visible part of a library unit as being exported to a compilation unit that
imports them by using a context ("with") clause. Data on declarations, exports, imports, and
statement counts are extracted from the Ada source code and combined to form structural
metrics that are used in the quality prediction models. This section defines the declarations,
exports, imports, statement counts, and resulting structural metrics.

2.1 DECLARATIONS

Extracted data from the Ada source code includes counts of declarations by the following
semantic classes: constants, objects, types, subtypes, formal parameters, exceptions,
subprograms, packages, and tasks. Also figuring in the quality prediction models are counts
of the total number of declarations, the number of program unit declarations, and the number
of non-program units declarations.

The quality prediction models have also included factors that are sensitive to the possible use
of the same identifier name in more than one way in the software. Data is extracted on the
number of unique names declared, across the entire software and the number of unique
names within a semantic class.

The example below illustrates the possible differences in these counts of declarations when
names are used more than once.

Package P is
procedure Q(A,B : in out integer, F: float);
function F(X: integer) return integer;
function F(X: character) return character;
type T is new integer range 1.. 100;

end P;

2-1

The number of unique names declared does not include multiple declarations of the same
name. In the example, F is declared twice as a function and once as a formal parameter,
representing only one unique name declared (F). In the example, there are seven names
declared (P, Q, A, B, F, X, T).

The number of unique names is also determined for each semantic class and then summed
over all semantic classes. We call this count the number of unique declarations. In the
example, F is declared twice as a function and once as a formal parameter, resulting in two
unique declarations (i.e., a function F and a formal parameter F). The example has eight
unique declarations: P, Q, A, B, F (function), F (formal parameter), X, T. Note that X is
counted only once as a formal parameter.

Our third count of declarations is the total number of declarations including all overloaded
names. In the example, F is declared twice as a function and once as a formal parameter,
resulting in three total declarations (i.e., two functions named F and one formal parameter F).
The example has ten total declarations (03, Q, A, B, F (integer function), F (character
function), F (formal parameter), X (integer formal parameter), X (character formal
parameter), T).

When declarations are divided into program unit and non-program unit declarations, the
counts are not sensitive to the overloading. In the example, there are four program unit
declarations (P, Q, F (integer function), F (character function)) and six non-program unit
declarations made (A, B, F (formal parameter), X (integer formal parameter), X (character
formal parameter), T).

2.2 EXPORTS

Exports are declarations made in the visible part of a library unit. Counts of exports are used
in factors in various quality prediction models. Two counting rules for exports should be
noted: (1) the name of a function or procedure implemented as a library unit is counted as a
single declaration, since the declarations within the function or procedure are not visible, and
(2) formal parameters to these subprograms, although visible, are not counted.

Figure 2-1 shows sample Ada source code consisting of library units P, Q, R, and S, and their
associated secondary units. In this example, P exports five total declarations
(P, TI, T2 ,T3,c), Q exports four declarations (Q, Q1, x,y), R exports six declarations
(R, RI, R2, x, y, z), and S exports one declaration (S).

2-2

Package P is
type TI ...;
type T2 ... ;
type T3 ...;
c : constant = 10;
end;

with P;
Package Q is

procedure Ql(x,y : in out integer);
end;

Package body Q is
procedure Ql(x,y :integer) is

end;
end;

with Q;
Package R is

procedure RI(x,y : in out integer);
procedure R2(z : in out integer);

end;

Package body R is
procedure RI is separate;
procedure R2 is separate;

end;

with P;
separate (R)
procedure Rl(x,y : in out integer) is

end;

with P;
separate (R)
procedure R2(z : in out integer) is

end;

with P,R;
procedure S(a,b,c: in out integer) is

end;

Figure 2-1. Example to Illustrate Exports and Imports

2-3

A second count, related to exports, is the count of users of the library units. We count this in
two ways: the number of CUs that contain a "with" to the LU in question, and the number of
LUAs that contain a "with" to the LU in question. In the above example, P is "withed" by
four CUs (package specification Q, subunit R. R1, subunit R. R2, procedure S), and thus
three LUAs (Q, R, S); Q is withed by one CU (package spec R) and one LUA (R); R is
withed by one CU (procedure S) and one LUA (S), and S is not withed at all.

2.3 IMPORTS

We associate a count of imports with each compilation unit based on the number of
declarations in the visible part of the library units that are "withed in" to the CU (i.e., named
in the CU's context clause). For example, we see that the compilation unit S imports the
visible declarations of P (P, TI, T2, T3, c) and R (R, RI, R2, x, y, z). The other imports are
as follows: package specification P imports nothing; package specification Q imports the
five declarations from P (P, TI, T2, T3, c); package body Q imports nothing; package
specification R imports the four visible declarations of Q (Q, Q1, x, y); package body
R imports nothing; and subunits R.Rl and R.R2 each imports the five declarations of
P (P, T1, T2, T3, c).

These counts of imports to each CU are then aggregated to the LUA level for CUs
comprising the LUA. Three import counts are defined: total imports, unique imports, and
cascaded imports.

Total imports is simply the sum of the imports for all CUs in the LUA. Thus, P imports
nothing; Q imports five declarations; R imports 14 declarations; and S imports 11
declarations.

Unique imports is a count that is sensitive to multiple CUs importing the services of the same
library unit. An example of this can be seen in the library unit aggregation R, where R.R1
and R.R2 each import the services of P. Unique imports do not count this duplication. Thus,
P has no unique imports; Q has five; R has nine; and S has 11.

The third count of imports is the "cascaded imports" introduced in the MOlE research [11. A
declaration imported to one compilation unit will "cascade" through (i.e., be visible to) all
descendent units of that compilation unit. For example, the five declarations imported to the
package specification Q are also visible to the package body Q; thus, the library unit
aggregation Q contains ten "cascaded imports:" the five directly imported to the
specification, and the five cascaded to the body. P and S have no subunits, so the count of
cascaded imports is the same as the count of total imports, namely, zero for P and 11 for S.
Four declarations are imported to the package specification R; these are cascaded to the
package body R and the subunits R.R I and R.R2. Both R.R I and R.R2 directly import five
declarations, thus R has 26 cascaded imports.

2-4

2.4 STATEMENT COUNTS

ASAP provides various counts of source lines of code, comment lines, blank lines, and
counts of Ada executable and declarative statements. For the most part, these counts are not
included in our analyses. However, as a proxy for measures of the extent and uniformity of
control flow, we defined several measures based on the number of call statements (either
subprogram "call" (i.e., invocation) or task entry call) in the compilation units.

2.5 QUALITY METRICS

Based on the extracted data on declarations, imports, and exports, we have defined various
metrics that relate to design characteristics and quality factors studied in the MOlE research.
These metrics are included in the quality prediction models in Section 8. The metrics are
defined in Table 2-1 (for subsystem-level metrics) and Table 2-2 (for LUA-level metrics) and
discussed in References 1, 2, and 4.

2-5

Table 2-1. Subsystem-level Quality Metrics

Design Characteristic Quality Metric
Context Coupling IMPEXP: Number of unique declarations imported

divided by the number of unique declarations exported

WITHPLU: Mean number of library units "withed" per
library unit aggregation

PUDPLU: Mean number of imported program unit
declarations per library unit aggregation

Control Coupling CALLPSUB: Mean number of subprogram invocation
statements per subprogram in the subsystem

CALLPEX: Mean number of subprogram invocation
statements per executable unit in the subsystem

Visibility CIMPIMP: Number of unique casci 'd declarations
imported divided by the number of i,, ique declarations
imported

VISHPUD: Percentage of hidden program unit
declarations (i.e., number of hidden program unit
declarations divided by number of hidden and visible
program unit declarations)

VISXPUD: Mean number of exported program unit
declarations per library unit aggregation

Locality FINTPUD: Percentage of imported program unit
declarations originating in the same subsystem as the
importing unit

Generality GENS: Percentage of generic and instantiated library
units in the subsystem

Parameterization PARVPUD: Mean number of parameters per visible
program unit

2-6

Table 2-2. LUA-level Quality Metrics

Design Characteristic Quality Metric
Context Coupling WITHS: Number of library units "withed" per

LUA

Functionality VIS PROG UNITS: Number of visible program
units within the LUA

2-7

SECTION 3

DIRECTORIES AND FILE ORGANIZATION

This section describes the directory structure that has been established to facilitate the
application of the quality prediction models. This directory structure has been implemented
on the SWEC Sun host computer named National under Unix. There are two purposes for
describing the directories and files: (1) They are referenced in the processing steps as
locations for intermediate data and results. Readers who are applying the quality prediction
models in the MITRE SWEC will know where to look for those data or results; and, (2) The
MOLE research team has found this directory structure to be a useful way to organize the
potentially confusing collection of programs and data. If the quality prediction models are
implemented on a different host computer, this file structure may be helpful as a model.

Figure 3-1 depicts the Unix directory structure. The "qmtop" directory is accessed through
the "design I" directory. The "qm" of qmtop stands for quality metrics. The qmtop directory
provides access to the projects, tools, and templates directories. Table 3-1 describes the
directories shown in Figure 3-1. The projects directory provides access to directories for
specific projects, while tools like ASAP and SAS are contained in the tools directory.

Many of the SAS programs needed for application of the quality prediction models create
files associated with the project to which the models are being applied. To retain flexibility
in these procedures, so they can be applied to various projects, templates have been written
by the MOIE team. The templates are generic programs that, when supplied with a project
name, can produce specific instantiated programs to create files associated with the project
name.

Figures 3-2 through 3-4 and Tables 3-2 through 3-4 display and describe the directories for
projects, tools, and templates.

3-1

Figure 3-1. High Level Directories

3-2

Table 3-1. High Level Directories

Directory Name Directory Description

design I This directory is at the highest level on the Sun host
called National and provides access to the qmtop
directory.

qmtop This directory is the highest directory for the quality
metrics project. It incorporates directories that include
programs and data input and data output for ASAP, SAS,
and MITRE-developed quality prediction models.

projects This directory contains directories for individual projects
that are to be analyzed.

This directory incorporates directories that include
project-specific data and programs.

(Throughout the remainder
of this report when the term
project is underlined
(12p02££) it should be
interpreted as an actual
project name)
tools This directory incorporates directories that include

executable programs and source code. These programs
are used to perform ASAP and SAS analyses, and to
apply the quality prediction models.

templates This directory incorporates directories that include
generic SAS programs that can be used to create project-
specific programs.

3-3

asapout data reports sas source ssd work

Figure 3-2. Project Directories

3-4

Table 3-2. Project Directories

Directory Name Directory Description

asap-out Output files created when running ASAP
are placed in this directory. Tis directory
contains one output file for each source
input file to ASAP.

data ASAP data output files are placed in this
directory.

reports Files that include predictions and summar,
desc.iptions are placed in this dircctoiy.

sas SAS programs obtained from the templates
directory and modified to be project-
specific are placed in this directory.

source Ada source code files are contained in this
directory.

ssd SAS data sets are placed in this directory
when they are created by SAS programs.

work General work files can be placed in this
directory.

3-5

b in , src

Figure 3-3. Tools Directories

Table 3-3. Tools Directories

Directory• Name Directory Description
bin This directory contains executable

programs.

src This directory contains directories that
contain source code associated with the
executable programs included in the bin
directory.

3-6

templates

partl part2 part3 models

Figure 3-4. Template Directories

3-7

Table 3-4. Template Directories

Directory Name Directory Description
partl This directory contains SAS programs that

are used to create the project's SAS
database.

part2 This directory contains SAS programs that
are used to create data sets at the library
unit level.

part3 This directory contains SAS programs that
are used to create data sets at the
subsystem level.

models This directory contains programs that are
used to produce results from the quality
prediction models.

3-8

SECTION 4

ADA SOURCE CODE ANALYSIS

This section describes the procedure for using ASAP and other programs to extract dala from
Ada source code and create files that are in the proper format for use with SAS. ASAP also
can generate a Project Summary Report. This section contains an overview of the procedure
and the detailed steps required.

4.1 OVERVIEW OF THE SOURCE CODE ANALYSIS PROCEDURE

The starting point for using the procedure in this section is the presence of the Ada source
code for a project. The steps in the procedure are as follows:

- Step 1-1 Establish user path and directories
- Step 1-2 Create the ASAP database
- Step 1-3 Create the project summary file (and report)
- Step 1-4 Create "withs by CU" file
- Step 1-5 Create instantiations file
- Step 1-6 Create declarations file
- Step 1-7 Create filenames and CUs file
- Step 1-8 Create CU call counts file
- Step 1-9 Create filename/subsystem mapping file
- Step 1-10 Change file data to uppercase

Step 1-2 runs ASAP, creating output files used in subsequent steps. Step 1-3 uses the ASAP
output files to create a project summary file that can be printed as a Project Summary Report
(see the Appendix for an example). Steps 1-4 through 1-9 create files that are subsequently
used to create SAS files. The final step changes data in the created files to uppercase so that
the files are in the correct form for SAS processing.

Figure 4-1 highlights the directories involved in the procedure, as follows:

- bin: contains programs used in steps 1-2 through 1-10
- source: contains source code used as input to step 1-2
- asap-out: contains input data for steps 1-4, 1-5, 1-6, 1-7, 1-8, and 1-10; and files of

output data from step 1-2
- data: contains input data for step 1-3; and files of output data from steps 1-2 through

1-10.

After following this procedure, all needed data will be present in SAS input files, ready for
compilation unit level analysis in Section 5.

4-!

4.2 DETAILED SOURCE CODE ANALYSIS PROCEDURE

Step 1-1 Evtablish user path and directories

The procedures begin with steps to ensure that the Unix path and directories are established,
so that commands in this section will execute correctly.

The user path should be updated to include the following directory:

/design l/qmtop/tools/bin

A new piect directory must be created in the projects directory. As previously indicated
(Table 3-1), the term r.iec is used throughout this report to represent the name of a project.
The following lower level directories must also be created in the newly created P
directory: asap-out, data, reports, sas, source, ssd, and work. The Ada source code must be
placed in the source directory located in the Rr.iect directory. The remaining steps in this
section assume the current directory is the V directory.

Step 1-2 Create the ASAP database

This step takes the Ada source code data located in the source directory and creates ASAP
reports stored in the asap-out directory and also stored in the data directory. The ASAP
database file reports are used in subsequent steps when extracting data to be used as input to
SAS. The database file is used in the next step to create a file that can be used to produce the
Project Summary Report.

The command to initiate this process follows:

datasap source asap-out data/p.oj.I.db

This command consists of four parts: the program name (datasap); the input directory name
(source); an output directory name (asap-out); and a second output directory name along
with the name of the file to be stored in the directory (data/p.QjW.u.db).

4-2

Sqmtop

t S projects

asopjput dat

Figure 4-1. Directories Used in Source Code Analysis Procedures

Step 1-3 Create the project summary file and report

This step uses the previously generated ASAP database file to create a project summary file,
which is formatted for printing as the Project Summary Report(Vr9ieI.usumm). A sample
of this report is shown in the Appendix. A second file is also packed, roj..summ, which is
used in the SAS processing described in Section 5.

The command to initiate this process follows:

projsumm data/RtjiW.db data/i..

This command consists of three parts: the program name (projsumm); the input directory
and file name (data/p jW.db); and the output directory and file name (data/p.gjggi).

Step 1-4 Create "withs by CU" file

This step takes files created in step 1-2 and creates an output file (rpej.c.withs) that is used
during the SAS processing described in Section 5.

4-3

The command to initiate this process follows:

withextr asapout > data/pr.jict.withs

This command consists of four parts: the program name (withextr); the input directory name
(asap_.out); the Unix symbol directing outputs to a file (>); and the name of the output
directory along with the output file stored in the directory (data/prWW.withs).

Step 1-5 Create instantiations file

This step takes files created in step 1-2 and creates an output file (oroiect.insts) that is used
during the SAS processing described in Section 5.

The command to initiate this process follows:

instextr asap-out > data/p.rj~g .insts

This command consists of four parts: the program name (instextr); the input directory name
(asapout); the Unix symbol directing outputs to a file (>); and the name of the output
directory along with the output file stored in the directory (data/pr•i~1.insts).

Step 1-6 Create declarations file

This step takes files created in step 1-2 and creates an output file (Dr•js.decs) that is used
during the SAS processing described in Section 5.

The command to initiate this process follows:

decsextr asap_out > data/p.rojie.decs

This command consists of four parts: the program name (decsextr); the input directory name
(asapout); the Unix symbol directing outputs to a file (>); and the name of the output
directory along with the output file stored in the directory (data/Rrtj.1.decs).

Step 1-7 Create filenames and CUs file

This step takes files created in step 1-2 and creates an output file (qr.gjkm.fnmap) that
contains a mapping of filenames to compilation unit names. This output is used during the
SAS processing described in Section 5.

The command to initiate this process follows:

fntocu asap-out > data/Urgjw.fnmap

4-4

This command consists of four parts: the program name (fntocu); the input directory name
(asap-out); the Unix symbol directing outputs to a file (>); and the name of the output
directory along with the output file stored in the directory (data/rprj.fnmap).

Step 1-8 Create CU call counts file

This step takes files created in step 1-2 and creates an output file (R.oject.calls) that contains
data concerning compilation unit counts. This output is used in during the SAS processing
described in Section 5.

The command to initiate this process follows:

callextr asapout > data,/1rjie.t.calls

This command consists of four parts: the program name (callextr); the input directory name
(asap-out); the Unix symbol directing outputs to a file (>); and the name of th- output
directory along with the output file stored in the directory (data/Proec t.calls).

Step 1-9 Create filename/subsystem mapping file

This step requires the user to create a file named project..ssmap that contains two columns.
The first column containing the name of the Ada source file and the second the "subsystem"
(as discussed in Section 1) to which the file belongs. After the file is created, it is placed in
the data directory. In the event that subsystems have not been identified for the project, the
user can map all files to a single subsystem. This will allow the user to continue with the
processing described in the next section.

Step 1-10 Change file data to uppercase

This step takes the files created in steps 1-4 through 1-9 and changes data to Unpercase so
that the files can be used to create SAS files.

The command to initiate this process follows:

uppercase project

This command consists of two parts: the program name (uppercase); and the input directory
name (pLoject).

4-5

SECTION 5

COMPILATION UNIT LEVEL ANALYSIS

This section describes a procedure for creating project SAS files at the compilation unit level.
The procedure involves executing SAS programs that operate on the SAS input files created
by the procedure in Section 4. This section contains an overview of the procedure and the
detailed steps in the processing.

5.1 OVERVIEW OF THE COMPILATION UNIT LEVEL ANALYSIS PROCEDURE

The starting point is the completion of the procedure in Section 4. resulting in SAS input
files. The steps in the procedure are as follows:

- Step 2-1 Create SAS programs from templates
- Step 2-2 Remove duplicate CU names
- Step 2-3 Create CU file
- Step 2-4 Create instantiations file
- Step 2-5 Create declarations file
- Step 2-6 Create declaration counts file
- Step 2-7 Create "withed in" relationship file
- Step 2-8 Create the SAS database file

When running SAS from the UNIX command line (as we describe in this report), for each
SAS program run (e.g., sas sasjprogram) an output file sasprogram.log will be generated.
This file contains a log of the executed SAS program, including any warnings and error
messages. It is recommended that this file be examined after each step to ensure that no
errors have been encountered.

A second output is often produced, sas_program.lst. This file contains the output from any
SAS print procedures. Many of the steps produce intermediate reports that are contained in
these files. While examining these reports is not necessary to obtain the predictive results, it
can help to provide a better understanding of the system under analysis and help to resolve
any errors that may have been encountered.

The first step uses program templates to create project-specific programs that will be used
during subsequent steps in this process. The next step examines previously generated files to
determine whether duplicate compilation unit names exist. If duplicate names exist it is
necessary to take steps to eliminate the duplicates. The remaining steps take either
previously generated files or files created during this process to create SAS CU-level files.

Figure 5-1 identifies the directories that are used during this procedure, as follows:

5-1

- templates: contains programs used as input to step 2-1
- sas: contains programs that are the output of step 2-1 and used in steps 2-2 through 2-8
- data: contains data used as input to steps 2-2 through 2-5, 2-7, and 2-8
- ssd: contains data used as input to step 2-6 and data used as output from steps 2-3

through 2-8
- bin: contains the program used in step 2-1

After following this procedure, all needed data is in CU-level files, to be used for library unit
level analysis (Section 6) and subsystem level analysis (Section 7).

5.2 DETAILED COMPILATION UNIT LEVEL ANALYSIS PROCEDURE

Step 2-1 Create SAS programs from templates

Prior to beginning the steps described in this section, it is assumed that the procedure
described in Section 4 has been completed. Thus the data directory contains the SAS input
files (e.g., pr.j.et.decs, pjpiect.withs, and •1.insts) that will be used during this
procedure. It is further assumed that the current directory is any of the following: design 1,
qmtop, tools, or bin.

This step instantiates program templates that are stored in the templates directory to create
programs specific to the project of interest. The resulting programs are stored in the sas
directory. The templates must be instantiated so that the programs will be able to access files
that include the project identification as part of the name (e.g., p.LEigg1.withs) and to store
results in the proper location.

The command to initiate this process follows:

modifytemplates

5-2

Sqmtop

tools projects]

Figure 5-1. Directories Used in CU-level Analysis Procedure

This command contains the name of a program (modify-templates) and a parameter which is
the name of the project that is being analyzed. The input template programs for this process
are located in the partl, part2, part3, and models directories located in the qmtop/templates
directory. The outputs from this process are stored in the parti, part2, part3, and models
directories located in the sas directory.

Step 2-2 Remove duplicate CU names

For this step and remaining steps in this procedure, the current directory should be the partl
directory in the sas directory.

This step examines the previously generated pnwjct.withs file for duplicate compilation unit
names. It produces an output file that the user must examine to determine if any compilation
unit names occur more than once. If duplicate compilation units are discovered, the user
must go back to the original code and eliminate the duplicate code and then restart the
process with the steps described in Section 4.

5-3

The command to initiate this process follows:

sas dupdecs .sas

This command invokes a program that checks for duplicate compilation unit names f r any
project. The Uje.withs file is an input to this program. If duplicate compilation unit
names exist, they are output to the sasdupdecs llst file.

A second approach to detecting duplicates is to examine the previously generated
pMiec.decs file for duplicate compilation unit names. If duplicate compilation units are
discovered, the user must go back to the original code and eliminate the duplicate code and
then restart the process with the steps described in Section 4.

The command to initiate this process follows:

sas dupdecs2.sas

This command invokes a program that also checks for duplicate compilation unit names for
any project. The jM.t.decs file is an input to this program. If duplicate compilation unit
names exist they are output to the sas-dupdecs2.1lst file.

Step 2-3 Create CU file

This step takers the previously generated 2j.Cjec.withs file and creates a SAS file
(culist.ssdOl) that contains the names of compilation units and their types.

The command to initiate this process follows:

sas culist.sas

This command invokes a program that takes the p.LQji..withs file containing relationships
between user compilation units and "withed in" library units and generates the culist.ssdOl
file that contains the names of the compilation units and their types. The output file is
contained in the ssd directory.

Step 2-4 Create instantiations file

This step takes the previously generated proiect.insts file and creates a SAS file
(instssf.ssdOl) that contains the instantiations associated with each compilation unit. The
output from this step serves as an input to step 2-6.

The command to initiate this process follows:

5-4

sas instssf.sas

This command invokes a program that creates the instssf.ssdO1 file. The input file to this
program is the pr.LQc.insts file.

Step 2-5 Create declarations file

This step takes the previously generated r.j~ic.decs file and creates a SAS file
(decssf.ssdOl) that contains information concerning declarations. The output from this step
serves as an input to the following step.

The command to initiate this process follows:

sas decssf.sas

This command invokes a program that creates the decssf.ssdO1 file containing declarations
information.

Step 2-6 Create declaration counts file

This step provides the additional processing needed to calculate counts that are sensitive to
names being used more than once, as discussed in Section 2.1. This step takes the file
generated by the previous step (decssf.ssdOl) and creates a SAS file (psdecnum.ssdOl) that
contains the number of declaration names, the number of •verloaded declaration names, and
the number of unique declaration name/class combinations.

The command to initiate this process follows:

sas psdecnum.sas

This command sends its results to the file, psdecnum.ssdOl. That file and the file produced
by step 2-4 (instssf.ssdOl) are then input to another program, invoked by the command,
psdecmod.sas, yielding the required declaration counts data in the psdecmod.ssdOl file.

Step 2-7 Create "withed in" relationship file

This step takes the previously generated p.rgj~ec.withs file containing relationships between
user compilation units and "withed in" library units and creates a SAS file (wither.ssdOl).

The command to initiate this process follows:

sas with 1 .sas

5-5

This command invokes a program that takes the 12[,je.withs file and creates the

wither.ssdOl file.

Step 2-8 Create the SAS database file

This step takes the previously generated V .summ file and creates the SAS database file
(database.ssdO1).

The command to initiate this process follows:

sas database.sas

This command contains the name of a program that takes the pw.ci.eCtsumm file and
generates the database.ssdOl file. The procedure is now complete with the output file
containing information on counts of declarations and "with's" at the compilation unit level.

5-6

SECTION 6

LIBRARY UNIT LEVEL ANALYSIS

This section describes a procedure for creating project SAS files at the library unit
aggregation (LUA) level. The procedure involves executing SAS programs that operate on
the SAS compilation unit level data created by the procedure in Section 5. This section
contains an overview of the procedure and the detailed steps in the processing.

6.1 OVERVIEW OF THE LIBRARY UNIT LEVEL ANALYSIS PROCEDURE

The starting point is the completion of the procedure in Section 5, resulting in SAS
compilation unit level data. To create library unit level files, the steps in the procedure are as
follows:

- Step 3-1 Create compilation unit mapping file
- Step 3-2 Create counts of "withed in" declarations file
- Step 3-3 Create imports file
- Step 3-4 Create unique imports counts file
- Step 3-5 Create the exports file
- Step 3-6 Create cascaded imports (CU level) file
- Step 3-7 Create cascaded imports (LU level) file
- Step 3-8 Create "withed by" file
- Step 3-9 Create program unit declarations file
- Step 3-10 Combine previously generated files
- Step 3-11 Create library unit files

This section describes a procedure to create library unit level SAS files. The first step creates
a file that maps compilation units to subsystem units. This step uses files created during the
processing described in Section 4. Steps 3-2 through 3-9 use files created during processing
described in Section 5 to create library unit files for various categories of data (e.g., "withed
in" data, cascaded imports data, and unique imports data). Step 3-10 combines the files
generated in steps 3-2 through 3-9. Step 3-11 takes the file generated in step 3-10 and creates
SAS files at the library unit level.

Figure 6-1 identifies the directories that are used during this procedure, as follows:

- sas: contains the programs used in all steps
- data: contains data used as input to step 3-1
- ssd: contains data used as input to steps 3-2 through 3-1; and files used as output data

from step 3-11

6-1

After following this procedure, the library unit level files are complete.

6.2 DETAILED LIBRARY UNIT LEVEL ANALYSIS PROCEDURE

This section describes each step in the procedure by giving the commands used to invoke the
necessary programs and the input and output.

Step 3-1: Create Compilation Unit Mapping File

The starting point for using the procedure in this section is the existence of the following
specific pjojrj files:

- in the data directory: VDject.fnmap (from step 1-7) and j.eLssmap (from step 1-9)
- in the ssd directory: wither.ssdOl (from step 2-7) and psdecmod.ssd0l (from step 2-6).

For this step and remaining steps in this procedure, the current directory should be the part2
directory in the sas directory.

This step takes a previously generated file that contains a mapping of filenames to
compilation unit names and another previously generated file that contains the mapping of
filenames to subsystems and creates a file that maps compilation units to subsystem units.

The command to initiate this process follows:

sas cumap.sas

This command contains the name of a program that takes the priect.fnmap and
_jct.ssmap files and creates the cumap.ssdOl file. The output contains a mapping of

compilation units to subsystem units.

6-2

II

Figure 6-1. Directories Used in LU-level Analysis Procedure

Step 3-2: Create CountsT of "Withed In" Declarations File

This step takes previously generated files and creates a file that contains counts of "withed
in" declarations for library units. The output file is used as an input to step 3- 10.

The command to initiate this process follows:

sas lusswdec.sas

6-3

This command contains the name of a program that outputs counts of the declarations withed
into the various compilation units and is ordered by subsystem. Note that the declarations
from the standard library are not included in these counts. The input files are wither.ssd0l,
cumap.ssd0l, and psdecmod.ssdOl. The uutput file is withdecs.ssd0l.

Step 3-3: Create Imports File

This step takes the file created in step 3-2 and creates a file that contains the counts of
imports from external subsystems (i.e., subsystems other than the one containing the library
unit in question) at the library unit level. Note that, in this step, if a library unit is "withed in"
more than once into compilation units of a LUA, the imports will be counted more than once.
The output file is used as an input to step 3-10.

The command to initiate this process follows:

sas luimp.sas

This command contains the name of a program that uses the withdecs.ssd0l file to calculate
the number of imports from external cubsystems at the library unit level. The output files

from this program are lusimp.ssdOl and lunimp.ssd0l.

Step 3-4: Create Unique Imports Counts File

This step takes the file created in step 3-2 and creates a file that contains the counts of
imports from external subsystems at the library unit level. Note that, in this step, if a library
unit is "withed in" more than once into compilation units of a LUA, the imports will be
counted only once. The output files are used as inputs to step 3-10.

The command to initiate this process follows:

sas luuimp.sas

This command contains the name of a program that uses the withdecs.ssd0l file to calculate
imports from external subsystems at the library unit. The output files from this program are
luusimp.ssd0l (imports from the same subsystem) and luunimp.ssd0l (imports from external
subsystems).

Step 3-5: Create the Exports File

This step takes the file created in step 3-2 and creates a file that contains counts of exports at
the LUA level. The output file is used as an input to step 3-10.

The command to initiate this process follows:

6-4

sas luexp.sas

This command contains the name of a program that computes the exports at the LUA level.
The input file to this program is withdecs.ssdOl. The output file from this program is
luexps.ssdOl.

Step 3-6: Create Cascaded Imports (Compilation Unit Level) File

This step takes the files created in steps 3-1 and 3-2 and creates a file that contains cascaded
import counts for compilation units. The output file is used as an input to step 3-7.

The command to initiate this process follows:

sas lucscd.sas

This command contains the name of a program that uses the withdecs.ssdOl and cumap.ssd0l
files to compute cascaded imports. The output file is lucscd.ssd0 I

Step 3-7: Create Cascaded Inputs (Library Unit Level) File

This step takes the file created in step 3-3 and creates a file that contains counts of cascaded
imports at the LUA level. The output file is used as an input to step 3-10.

The command to initiate this process follow-:

sas lucimp.sas

This command contains the name of a program that uses the lucscd.ssdOl file to compute the
cascaded imports at the LUA level. The output file from this program is lucimp.ssdO 1.

Step 3-8: Create "Withed By" File

This step takes the previously generated file containing "withed in" information and the
previously generated compilation unit mapping file and creates a "withed by" file for library
units.

The command to initiate this process follows:

sas luwithby.sas

This command contains the name of a program that calculates the "withed by" relationships.
The input files to this program are wither.ssd0l and cumap.ssd0l. The output file from this
program is luwithby.ssd0l.

6-5

Step 3-9: Create Program Unit Declarations File

This step takes the previously generated database file and the previously generated
compilation unit mapping file and creates a file that contains information on parent-child
relationships (e.g., package body-subunit [1]) and on the counts of various program unit
declarations within a LUA. The output file is used as an input to step 3-10.

The command to initiate this process follows:

sas lupuds.sas

This command contains the name of a program that takes as input the SAS data set contained
in database.ssdOl and cumap.ssd01 and delivers as output the lupuds.ssd01 file.

Step 3-10: Combine Previously Generated Files

This step takes files created by steps 3-2 through 3-9 and combines this data into a single data
file. The output from this step serves as input to step 3-11.

The command to initiate this process follows:

sas lusscmb.sas

This command contains the name of a program that creates a SAS data set for the specified
project at the library unit level. It combines the following files:lunimp.ssd0l, lucimp.ssd0l,
lusimp.ssdOl, luexp.ssd0l, luunimp.ssd0l, luusimp.ssd0l, lupuds.ssd0l, luwithby.ssd0l.

The output file is lucmb.ssd0l.

Step 3-11: Create Library Unit Data Sets

This step takes the file generated by the previous step and generates a file, ludb.ssd0l,
containing data on all LUAs and also creates four files that represent partitions of ludb.ssd01
according to characteristics of the LUAs. The first of these files, pkgs.ssd0l, contains
information concerning LUAs that contain a library unit package and at least one executable
line of code. A second file, pkgd.ssd0l, contains information concerning LUAs that contain
a library unit package, but do not contain any executable lines of code. The third file,
subs.ssd0l, contains information concerning LUAs that are subprograms. The fourth file,
inst.ssd0l, contains informattn concerning LUAs that are instantiations of generics.

The command to initiate this process follows:

sas ludb.sas

6-6

This command contains the name of a program that creates SAS data sets at the LUA level.
The input file to the program is lucmb.ssdO0. The output files from this program are
ludb.ssdO0, pkgs.ssdO1, pkgd.ssdO1, subs.ssdO1, and inst.ssd01.

6-7

SECTION 7

SUBSYSTEM LEVEL ANALYSIS

This section describes a procedure for creating project SAS files at the subsystem level. The
procedure involves executing SAS programs that operate on the SAS compilation unit level
and library unit level data created by the procedures in section 5 and 6. This section contains
an overview of the procedure and the detailed steps in the processing.

7.1 OVERVIEW OF THE SUBSYSTEM LEVEL ANALYSIS PROCEDURE

The starting point is the completion of the procedure in Section 6, resulting in SAS library
unit level data. To create subsystem level files, the steps in the procedure are as follows:

- Step 4-1 Create subsystem exports file
- Step 4-2 Create subsystem imports file
- Step 4-3 Create subsystem program unit declarations file
- Step 4-4 Create subsystem level SAS file

This section describes a procedure to create subsystem level file. The first three steps take
previously generated files and create files containing data concerning exports, imports, and
program unit declarations at the subsystem level. The last step takes the files created by the
previous steps and combines the data into a single file.

Figure 7-1 identifies the directories that are used during this procedure, as follows:

- sas: contains the programs used in all steps
- data: contains data used as input and output for all steps

After following this procedure, the subsystem level files are complete.

7.2 DETAILED SUBSYSTEM LEVEL ANALYSIS PROCEDURE

This section describes each step in the procedure by giving the commands used to invoke the
necessary programs and the input and output.

The starting point for this procedure is the existence of the files withdecs.ssdOl and
database.ssdOl.

Step 4-I Create subsystem exports file

7-1

For this step and remaining steps in this procedure, the current directory should be the pan3
directory in the sas directory.

This step takes the previously generated file containing information concerning "withed in"
declarations at the LUA level and creates several files containing information concerning
exports at the subsystem level. The outputs from this step serve as input to step 4-4.

The command to initiate this process follows:

sas ssexpts.sas

This command contains the name of a program that creates SAS data sets at the subsystem
level. The input file to the program is withdecs.ssdOl. The output files from this program
are exports.ssdO1, exptsubs.ssdO1, ngenexsb.ssdO1, expdecs.ssdO I, and crssdecs.ssdO1.

Step 4-2 Create subsystem imports file

This step takes the previously generated file containing information concerning "withed in"
declarations at the LUA level and creates several files containing information concerning
imports at the subsystem level. The outputs from this step serve as input to step 4-4.

The command to initiate this process follows:

sas ssimpts.sas

This command contains the name of a program that creates SAS data sets at the subsystem
level. The input file to the program is withdecs.ssdOl. The output files from this program
are impcus.ssdO1, impdecs.ssdO1, impcscd.ssdO1, and impcdec.ssd01.

Step 4-3 Create subsystem program unit declarations file

This step takes the previously generated database file and creates two files that contain data
concerning program unit declarations at the subsystem level. The outputs from this step
serve as inputs to step 4-4.

The command to initiate this process follows:

sas sspuds.sas

7-2

Sqmtop

Figure 7-1. Directories Used in Subsystem-level Analysis Procedure

This command contains the name of a program that creates SAS data sets at the subsystem
level. The input file to this program is database.ssd. The output files from this program are
puds.ssd and gtots.ssd.

Step 4-4 Create subsystem level SAS file

This step takes the files created by the previous three steps and creates a subsystem level data
set file.

The command to initiate this process follows:

sas sscmb.sas

This command contains the name of a program that creates a SAS data set that merges
previously generated data sets. The output file from this program is sscmb.ssd.

7-3

SECTION 8

DESCRIPTION AND USE OF THE QUALITY PREDICTION MODELS

This section describes the quality prediction models and gives commands to invoke programs
that apply the models using project data in files created by previous procedures in this report.
The models described in this section were developed based on data provided by the Software
Engineering Laboratory (SEL) of NASA's Goddard Space Flight Center. Data from four Ada
projects consisting of 21 subsystems were used. Reference I provides detailed profiles of the
data. These projects were concerned with the development of interactive, ground-based,
scientific applications.

These models have had only limited validation using different projects. The application of
the models should be viewed as a part of the process of validating the models in different
environments. A different environment may lead to more or less defects than those predicted
by the models. However, initial validation efforts have indicated that there may be a high
correlation between actual and predicted defects, implying a linear relationship. The
coefficient of this relationship must be determined externally from the models. When
interpreting the model predictions for projects from substantially different development
enviroments than those used to calibrate the model, the quality predictions may be interpreted
as measures of relative merit in that environment.

The quality prediction models in this section may be classified according to the quality factor
of interest, the time period over which a metric is predicted, and the level of granularity of
the model. The models relate to the following quality factors: reliability, maintainability, and
flexibility. For each of these quality factors, models are presented that predict metrics over
two different time periods: (1) unit, system/integration, and acceptance (USA) testing, and
(2) system/integration and acceptance (SA) testing. In the case of reliability, models are
given at the subsystem level and the LUA level of granularity, while maintainability and
flexibility models are presented only at the subsystem level.

The models that are presented represent a subset of the models that have been developed.
These models were selected because they have produced the best results thus far in their
category. For additional information concerning models that have been developed see
references 1 and 4.

Prior to running any of the models, the user should enter the following command to change to
the models directory:

cd /design 1/qmtop/projects/proect/sas/models

8-1

81 RELIABILITY MODELS

Four models are described: two each for predictions at the subsystem and LUA levels.
Within each level, models are given at both the USA and SA time intervals. Note that,
although these models are identified for convenience as reliability models, the research team
has not had access to data on software-induced system failures. Instead, software defect data
was analyzed to develop the models. Consequently, the models are more accurately
identified as "reliability-related", because of the strong connection between defects and
failures [6].

Reliability Model #1: Subsystem/USA

This model predicts the total number of defects per thousand lines of source code
(TOTDEFSL) -- where "total" is used to mean defects reported during the activities of unit,
system/integration, and acceptance testing. TOTDEFSL is predicted at the subsystem level.

The explanatory variables in the model are defined as follows:

Design Characteristic Measure
Context Coupling IMPEXP: number of unique declarations

imported divided by the number of unique
declarations exported

Visibility CIMPIMP: number of unique cascaded
declarations imported divided by the number of
unique declarations imported

The basic form of the model is:

log(Y) = ao + al * log (XI) + a2 * log (X2)
where

Y = dependent variable (TOTDEFSL)
Xi= independent (explanatory) variables
ai= coefficients determined by multivariate regression

The calibrated model is as follows[I]:

log (TOTDEFSL) = - 0.04 + 0.5 l*log (IMPEXP) + 0.26*log (CIMPIMP)

This model can be run using the following command:

sas rel ss usa.sas

8-2

The outputs from the model will be the predicted values of TOTDEFSL for all subsystems in
the Ada system, where TOTDEFSL is the defects per thousand source lines of code reported
during the activities of unit, system/integration, and acceptance testing.

Reliability Model #2: SubsystemrSA

This model is similar to Model #1, except it predicts the number of defects per thousand lines
of source code that will occur during system/integration and acceptance testing only
(SYACDEFSL).

The explanatory variables in the model are identical to those in model #1.

The calibrated model is [l]:

log (SYACDEFSL) = -1.42 + 0.70 * log (IMPEXP) + 0.46 * log (CIMPIMP)

This model can be run using the following command:

sas relss-sa.sas

The outputs from the model will be the predicted values of SYACDEFSL for all subsystems
in the Ada system, where SYACDEFSL is the defects per thousand source lines of code
reported during the activities of system/integration, and acceptance testing.

Reliability Model #3: LUAIUSA

This model predicts the probabilities that a library unit aggregation has 0, 1, 2, 3, 4, 5, or
greater than 5 defects detected during the tAlit, system/integration and acceptance test
activities [4]. From these probabilities, the expected total number of defects can be predicted
at the LUA level and any other higher levels of aggregation (e.g., subsystem or project) by
rolling up the LUA results.

The explanatory variables in the model are defined as follows:

Design Characteristic Measure
Context Coupling WITHS: number of library units "withed" per

LUA

Functionality VIS PROG UNITS: number of visible program
units within the LUA

The model can be described as follows:

8-3

p(X < i) = 1/(1 + exp(Intercepti - model), i = 0, ..., 5

p(X>5) = I1- p(X < 5)

where p(X < i) is the probability that the number of defects, X, in the LUA is less than or
equal to i (for i=0,l,...5), and p(X > 5) is the probability that the number of defects is greater
than five. The model is described in more detail in 141. The model term is given by

model = a, * (WITHS) + a2 * (VIS PROG UNITS)

where the Intercepti's and ai's are the model parameter values as indicated in the table below.:

Interceptl 0.41
Intercept2 0.83
Intercept3 1.13
Intercept4 1.37
Intercept5 1.53
Intercept6 1.69

Context Coupling WITHS 0.07 (a,)
Functiortality VIS PROG UNITS 0.0008 (a2)

This model can be run by entering the following command:

sas rel-luusa-sas

Several processing stens occur when the command is executed. The direct outputs from the
model are the probabilities of defects, as previously described. Using these probabilities,
expected numbers of defects are computed for all LUAs and printed. Next, the expected
defects at the LUA level are rolled up and printed at the subsystem level. Note that step 1-9
in Section 4 provides for the case in which there is a single "subsystem" that actually is the
entire system.

Reliability Model #4. LUAISA

This model is similar to Model #3, except that it predicts over the system/integration and
acceptance test activities only [4]. The model parameters are as follows:

8-4

Class IdentifierYI-

Interceptl 0.60
Intercept2 1.03
Intercept3 1.35
Intercept4 1.54
Intercept5 1.74
Intercept6 1.89

Context Coupling W1THS 0.06 (ai)
Functionality VIS PROG UNITS -0.007 (a2)

This model can be run by entering the following command:

sas rellusa.sas

The outputs from the model are similar to model #3, except the predictions apply to the more
restricted interval of system/integration and acceptance testing.

&2 MAINTAINABILITY MODELS

Two models are described: the first predicts over the unit, system/integration, and acceptance
(USA) testing activities and the second predicts over system/integration, and acceptance (SA)
testing only. Both models predict, for subsystems, the probability that a defect in the
subsystem will require less than 1 hour, less than 1 day, and less than three days of defect
isolation effort [1].

Maintainability Model #l: Subsystem/USA

Model #1 is at the subsystem level, with coverage over unit, system/integration, and
acceptance (USA) testing.

83

The explanatory variables in the model are defined as follows:

Design Characteristic Measure
Context Coupling WITHPLU: Mean number of library units

"withed" per library unit aggregation

Visibility VISHPUD: Percentage of hidden program unit
declarations (i.e., number of hidden program unit
declarations divided by number of hidden and
visible program unit declarations)

Control Coupling CALLPSUB: Mean number of subprogram
invocation statements per subprogram in the
subsystem

The model can be described as follows:

p(Y< i) = 1/(1 + exp(Intercepti - model)),

such that

p(Y < i) is the probability that a defect in the subsystem will require isolation effort less
than or equal to category i, (for three categories: 1 hour, I day, and three days), and

model =ai •Xl +a 2 *X 2 +a 3 *X 3

where the Xis represent the explanatory variables described above, and the Intercept;'s and
ai's are the model parameter values as indicated in the table below:

Clas Identifier VaU

Intercept 1 0.147
Intercept2 2.244
Intercept3 3.525

Context Coupling WITHPLU 0.070 (a,)
Visibility VISHPUD -1.301 (a2)
Control Coupling CALLPSUB -0.029 (a3)

This model can be run as follows:

sas mnt ss-usa.sas

8-6

Any anomalies occurring while running the model will be noted in the SAS log file
mnt_ssusa.log. The output will be contained in the file mnt-ss-usa.lst. Five columns of
output are produced. The first and second columns contain the name of the project and
subsystem, respectively. The third, fourth and fifth columns contains the predicted
probabilities that a effort to isolate a defect will be less than one hour, less than I day, and
less than three days.

The outputs from the model will be the probabilities, for each subsystem, that the time to
isolate defects in that subsystem will require less than 1 hour, less than I day, and less than
three days.

Maintainability Model #2: SubsystemISA

This maintainability model is similar to model #1 except that the prediction covers
system/integration and acceptance (SA) testing only. The explanatory variables in the model
are defined as follows:

8-7

Design Characteristic Measure
Context Coupling WITHPLU: Mean number of library units

"withed" per library unit aggregation

Generality GENS: Percentage of generic and instantiated
library units in the subsystem

Control Coupling CALLPEX: Mean number of subprogram
invocation statements per executable unit in the
subsystem

Locality FINTPUD: Percentage of imported program unit
declarations originating in the same subsystem as
the importing unit

The model parameter values are indicated in the table below:

Identifier Value

Intercept 1 -1.99
Intercept2 -0.15
Intercept3 1.33

Context Coupling WITHPLU 0.12 (a1)
Generality GENS 1.80 (a2)
Control Coupling CALLPEX -0.03 (a3)
Locality FINTPUD 1.86 (a4)

This model can be run as follows:

sas mnt_ss_sa.sas

Any anomalies occurring while running the model will be noted in the SAS log file
mnt-ss-sa.log. The output will be contained in the file mntsssa.lst. Five columns of
output are produced. The first and second columns contain the name of the project and
subsystem, respectively. The third, fourth and fifth columns contains the predicted
probabilities that a effort to isolate a defect will be less than one hour, less than I day, and
less than three days.

8-8

8.3 FLEXIBILITY MODELS

Two flexibility models are described: the first predicts over the unit, system/integration, and
acceptance (USA) testing activities and the second predicts over system/integration, and
acceptance (SA) only. Both models predict, for subsystems, the probability that a non-defect
change in the subsystem will require less than 1 hour, less than I day, and less than three
days of isolation effort [11.

Flexibility Model #1: SubsystemlUSA

Model #1 is at the subsystem level, with coverage over unit, system/integration, and
acceptance (USA) testing. The explanatory variables in the model are defined as follows:

Design Characteristic Measure
Context Coupling PUDPLU: Mean number of imported program

unit declarations per library unit aggregation

Generality GENS: Percentage of generic and instantiated
library units in the subsystem

Visibility VISHPUD: Percentage of hidden program unit
declarations (i.e., number of hidden declarations
divided by number of hidden and visible program
unit declarations)

Control Coupling CALLPSUB: Mean number of subprogram
invocation statements per subprogram in the
subsystem

The model is similar to maintainability models in structure and results. The model parameter
values are indicated in the table below:

class Valueie 2

Interceptl 0.599
Intercept2 2.385
Intercept3 3.229

Context Coupling PUDPLU 0.015 (a,)
Generality GENS 2.462 (a2)
Visibility VISHPUD -1.180 (a3)
Control Coupling CALLPSUB -0.044 (a4)

8-9

This model can be run as follows:

sas flx_ssusa

Any anomalies occurring while running the model will be noted in the sas log file
flx_ss-usa.log. The output will be contained in the file fix-ssusa.lst. Five columns of
output are produced. The first and second columns contain the name of the project and
subsystem, respectively. The third, fourth and fifth columns contains the predicted
probabilities that a effort to isolate a defect will be less than one hour, less than I day, and
less than three days.

Flexibility Model #2: Subsystem/SA

This model is similar to flexibility model #1 except that the prediction covers
system/integration and acceptance (SA) testing only. The explanatory variables in the model
are defined as follows:

Design Characteristic Measure
Context Coupling PUDPLU: Mean number of imported program

unit declarations per library unit aggregation

Generality GENS: Percentage of generic and instantiated
library units in the subsystem

Visibility VISXPUD: Mean number of exported program
unit declarations per library unit aggregation

Parameterization PARVPUD: Mean number of parameters per
visible program unit

The model parameter values are indicated in the table below:

la Identifier Value

Interceptl -2.50
Intercept2 -0.43
Intercept3 0.46

Context Coupling PUDPLU 0.03 (a,)
Generality GENS 3.03 (a2)
Visibility VISXPUD 0.33 (a3)
Parameterization PARVPUD 0.10 (a4)

8-10

This model can be run as follows:

sas flx_sssa

Any anomalies occurring while running the model will be noted in the sas log file
fix-ss-sa.log. The output will be contained in the file tlx-ss-sa.lst. Five columns of output
are produced. The first and second columns contain the name of the project and subsystem,
respectively. The third, fourth and fifth columns contains the predicted probabilities that a
effort to isolate a defect will be less than one hour, less than I day, and less than three days.

8-11

LIST OF REFERENCES

1. Agresti, W. W., W. M. Evanco, M.C. Smith, D. R. Clarson, "An Approach to Software
Quality Prediction from Ada Designs", MTR-90W00135, MITRE Corporation,
September 1990.

2. Agresti, W. W., W. M. Evanco, M. C. Smith, "Early Experiences Building a Software
Quality Prediction Model", Proceedings of the Fifteenth Annual Software Engineering
Workshop, November 1990.

3. Doubleday, D. L., "ASAP: An Ada Static Source Code Analyzer Program",
TR-1895, Department of Computer Science, University of Maryland, August 1987.

4. Evanco, W. M., and W. W. Agresti, "Statistical Representations and Analyses of
Software", Proceedings of the 24th Symposium on the Interface of Computing Science
and Statistics, College Station, Texas, 18-21 March 1992.

5. Evanco, W. M., W. M. Thomas, W. W. Agresti, "Estimating Ada System Size During
Development", MTR-91W00132, MITRE Corporation, December 1991.

6. Musa, J. D., A. lannino, and K. Okumoto, Software Reliability, New York:
McGraw-Hill, 1987.

7. SAS Institute Inc., SAS Procedures Guide, Release 6.03 Edition. Cary, NC: SAS
Institute Inc., 1988.

RE-I

APPENDIX

EXAMPLE OF PROJECT SUMMARY REPORT

A-I

ovo0000m- 10 lo - 0 000~-MNN 0 ý -

C. 000000000 0 a000~C000 0000000 0 c00

C. 000000-O 00000000000 0 0000000 0 00

0~~~'000OO0NO CIO WZ 0 0 O 0 0 '0 0 0 0 0 0 0o 0
CC

00 ,0m : O0 0!- n o 0~0 0 0C0'0 0- N 0 C0m0

t40V 1 10 C",

E- 000000000 0 000 00000 00000000 0 000

000 ,--~0 - 0
0

0 OO-OOrO." 0 0-0 -0 0 0-0

U 00000000 - CO0'400000OC0 0 0 0 00M 0 0-~0

-~ .000000f, 10 0 00U00 0 - C 0 0 0q

z
COC OC ON 0 0000"O OO OO 0 0 0000-.- 0 000

E-00-

000000000 0a 0.00,0O .0 0-00-00 0 00c

00fvCN000 000 - C r Wr-0W 000000, m-. 6,10N0N-.00 - M-V)0.-'0 0 00W

CýNC

zQ
3 0n M C01 , k , NVI 0 r-1)0) ,4

tpý -p : -" Nw0N V. v-N -

CE0 0: 0 0 w - N N VM

%' E"- w ND' N N0 M N M N N L0 v N 0 -M- 61

Z E. U N C4 WN -

C CV

E E~ '00~0C'NN)0).~NN0C'00 2, 0' 0 -. 4O * '0t

T- ~N 0 'AN').- 4. tr-, C. -. NC ~ N

~~~NN~I LN N - 0-'

<V. - ý m - - l q (

S ' I IE I 1. 1
L I0 I.0 I'm I

-A-



NNC~CN C NCO OOONCOCO 0 QOOCONO N 0cC

r. m o 10 _ N 0-M 0CNN C N CN CN r, N- C 0 'D 0 a'
10C0 C0 CN C. M C 0 C i'C C C C 0 CC C N m 0CC' o ýV

WE- r CM~OV~ C '~ N C 0 C'.~c)' 0 C.).~C . .~
OvoC N. 04NN0 N m q, 0 ,N 0 - T .C,.-~ 01 G

MNN

-0ONM0 wv -,-v N -1 m_ ViN ncq. 0
Z 0 mi~ NN~ N ! 10 C0WN N0 N w~N C C .. 'C0

r" nM IM l. - o a m ý _M 2N!..)ý :F) ONI N 11 NrQ 20)!00~ CN N I. 0 C.C i iO '0 N0.

o- O-, -owN N i " N.).-)-

m rN W~zq, N -NC)~N C CCO C iCN0 In* r N Cej N NiI)- C 0) wC-NCC C 0 O_ NN0N In N, I r -IN N .VC

N N'0C q NQ Z-- NV 0.NNN- - - --a -o

~N -N N

0 N01N ) N -
8z '

C ~ ~ U .- ý 0CCC "oN N w r- N N C Vi V C - -0 ~ -

C QI-.N N mýt N .4 - 0 --m 0 Naýa N:

N NNCC"CNNC.C NCC 0NC '3~ N N.

rq.N N)-IVC', N N.. -- IInLe- 2
0 NNN NCN

r IC

0Q - %' - -' -

0ýCNo tn 0 NCNC a--a. CIL. N Z. !7-VCC

c* c (L V; 0, -i I~ m N) C, CN NC. - - ~ N - l 0- Z_ N N, "n iN

~~~~~C~~r 0.N CCi~ VU rNC VN -. C ii N N C) V,2~. C WV .-CCU

C ~ ~ ~ P tn,-,NC. 0 i -A V,. V - 7f.- 7

)~A-4

0. /2I 0.00 000 00.0 00.0 00.0 No0 so= so0= c0oo =Q0=

WI 000 00.0 0=0 0co0 000 00os ==0Q Cos0 lo0.0.

0..1

N ~ -r'~ ~ A, 5, N N 0'~. . N ' -. 0~. .O

- ~ 00000 000 0 0 0 000co 000 000o 000 00cC0c :

troo00 o 00 000c0

-00 C00 (I

< 0

tp co0 000 000 00ý 00 c00 :ýO 0-0 3o.3 oc0 O
00 = =-~ 0

00 000 ==ý

00 0 0

00 000 w0

N r4 10~ w~'N r - -~

.F> X00- 7

LL. 0 00 0 0A-6

L4 ý4z iz

r r

A-7

GLOSSARY

ASAP Ada Source Analyzer Program

CU Compilation Unit

DoD Department of Defense

LU Library Unit
LUA Library Unit Aggregations

MOlE Mission Oriented Investigation and Experimentation

PSR Project Summary Report

SWEC Software Engineering Center
SA System and Acceptance Test
SAS Statistical Analysis System
SEL Software Engineering Lab

USA Unit, System and Acceptance Test

'US. GOVERNMENT PAINeTNG OFFICE K •93-7E- -

GL-1

